
Reusable and Extensible High Level Data Distributions

Roxana E. Diaconescua, Bradford Chamberlainb, Mark L.Jamesc, Hans P.Zimaa,c,d

aCACR, California Institute of Technology, Pasadena, CA 91125
bCray Inc., Seattle, WA 98104

cJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
dInstitute of Scientific Computing, University of Vienna, Austria

ABSTRACT
This paper presents a reusable design of a data distribution frame-

work for data parallel high performance applications. Distributions

are a means to express locality in systems composed of large num-

bers of processor and memory components connected by a network.

Since distributions have a great effect on the performance of appli-

cations, it is important that the distribution strategy is flexible, so

its behavior can change depending on the needs of the application.

At the same time, high productivity concerns require that the user is

shielded from error-prone, tedious details such as communication

and synchronization.

We propose an approach to distributions that enables a user to re-

fine a distribution type and adjust it to optimize the performance

of the application. Additionally, the low-level communication and

synchronization details are concealed from a programmer, resulting

in increased productivity. To emphasize the generality of our dis-

tribution machinery, we present its abstract design in the form of a

design pattern, which is independent of a concrete implementation.

To illustrate the applicability of our distribution framework design,

we outline the implementation of data distributions in terms of the

Chapel high productivity programming language.

1. INTRODUCTION
Today’s massively parallel High Productivity Computing Systems

(HPCS) are characterized by a modular structure, with a large num-

ber of processing and memory units connected by a high-speed net-

work. Locality of access as well as load balancing are primary con-

cerns in these systems that are typically used for high performance

scientific computation. Datadistributionsaddress these issues by

providing a range of methods for spreading large data sets across

the components of a system. Over the past two decades, many lan-

guages, systems, tools, and libraries have been developed for the

support of distributions. Since the performance of data parallel ap-

plications is directly influenced by the distribution strategy, users

often resort to low-level programming models which allow fine-

tuning of the distribution aspects affecting performance, but, at the

same time, are tedious and error-prone.

In this paper we propose a novel design for the high-level speci-

fication of distributions in data parallel applications. Our design

abstracts over common coding patterns that we and others have ex-

perienced in programming manually and automatically distributed

parallel programs. The elements of our distribution machinery in-

cludedomains, index sets, data collections, anddistributions. To

stress the generality of our design, we first present the abstract

distribution design pattern and its elements, independent of the

Chapel [4] language. Then, we discuss the implementation of the

design in the context of the language. We are trying to keep a dis-

tinction between the distribution design pattern and the Chapel lan-

guage ability of expressing the design. We hope the reader will

have this distinction in mind when reading the paper.

This paper is organized as follows. Section 2 introduces the distri-

bution design pattern using the presentation format introduced by

Gamma et.al. [10]. Section 3 discusses the implementation of the

distribution design in the context of the Chapel language. Section 4

reviews related work. Section 5 concludes the paper.

2. THE DISTRIBUTION DESIGN PATTERN
2.1 Intent
The intent of our distribution design pattern is to capture the com-

mon elements of data distributions in scientific computing. Data

distributions define the interface for distributing the elements of

a collection across multipleunits of localitywithout constraining

the type of elements or indices in the collection. We use the term

unit of locality to denote the building block for a computer system

that is made of multiple similar components. Each component has

memory and operation capabilities.

2.2 Motivation

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Reusable and Extensible High Level Data Distributions

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This paper presents a reusable design of a data distribution framework for data parallel high performance
applications. Distributions are a means to express locality in systems composed of large numbers of
processor and memory components connected by a network. Since distributions have a great effect on the
performance of applications, it is important that the distribution strategy is flexible, so its behavior can
change depending on the needs of the application. At the same time, high productivity concerns require
that the user is shielded from error-prone, tedious details such as communication and synchronization. We
propose an approach to distributions that enables a user to refine a distribution type and adjust it to
optimize the performance of the application. Additionally, the low-level communication and
synchronization details are concealed from a programmer, resulting in increased productivity. To
emphasize the generality of our distribution machinery, we present its abstract design in the form of a
design pattern, which is independent of a concrete implementation. To illustrate the applicability of our
distribution framework design, we outline the implementation of data distributions in terms of the Chapel
high productivity programming language.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Consider a high-performance computing architecture consisting of

a large number of units of locality. Memory is collocated with

the unit, causing local accesses to be less expensive than remote

accesses. Examples of such configurations include non-uniform

memory access (NUMA) architectures, clusters of processors, and

emerging peta-scale architectures such as Cascade [4].

A data distribution partitions a collection of data and distributes its

elements across units of locality. To achieve high performance, this

means a distribution strategy must account for access locality as

well as load balance.

When distributing data parallel programs, one typically specifies

the following:

1. Decide what data is profitable distributing. In these pro-

grams, one distributes large data, stored in arrays, graphs

structures, or a combination of indirection structures.

2. Decidehowto distribute the data. That is:

(a) What kind of distribution to use: e.g., block, cyclic,

indirect, graph partitioning strategies.

(b) What is thefunctionalityof the distribution:

For each indexin the large data structure:

• Specify the unit where the data associated with the

index will reside;

• Specify the offset within that unit to complete the

location of the data.

(c) Ensure correctness through synchronization and com-

munication.

These steps are common across most of the languages, tools, li-

braries or applications handling distribution of large data in data

parallel applications.

For instance, in HPF [14, 15], one specifieswhat to distribute by

using the keywordDISTRIBUTE with an array or template. Then,

one specifieshow to distribute the array by providing thekind of

distribution as a parameter to the distribution directive. HPF allows

for a few distributions: block, cyclic, general block, and indirect.

Given thekind of distribution, itsfunctionalityis directly encoded

in the compiler. However, the indirect distribution lets the pro-

grammer to explicitly specify the processor (map) to be placed on

for each individual array element. The indirect distribution takes

an integer array as parameter whose elements are integer processor

numbers.

In a manual parallelization setting, the programmer is responsible

for all the steps presented in the preceding paragraph.

The distribution pattern abstracts this design so that distribution

kind is extensible, thus allowing a programmer to define new types

of distributions with newfunctionalitywhen needed. The distribu-

tion design should also be open, so that performance is still in the

hands of programmers. Finally, the distribution interface should

not make any assumption with respect to the data representation

or the type of index in a data collection. We argue that specifying

the kind and functionality of a distribution is sufficient for a system

to infer the synchronization and communication for a data parallel

program.

Thus, a distribution interface should specify, for a particular data

index, its associated unit of locality and the layout within that unit.

Sometimes, depending on the structure of data, the latter can be

determined automatically.

Consider a program that solves a Poisson equation to compute the

pressure field over the points of a discrete domain using the Fi-

nite Element Method. Depending on the concrete application, vari-

ous discretization strategies may be considered for a given domain.

Thus, the same algorithm may be used with a regular mesh de-

scribed by cubic elements, or with an irregular mesh consisting of

tetrahedral elements. In both cases, the underlying parallel struc-

ture of the application is identical. Moreover, the data access,

and consequently, synchronization structures are identical as well.

However, since in a conventional approach the different data repre-

sentations are encoded in the algorithm, these similarities may not

be detectable by looking at the source code.

Thus, we wish to introduce the appropriate abstractions to cap-

ture these similarities and separate the algorithm from details of its

data representation. Specifically, we would like to decouple indices

from collections of data items using index sets and domains.Index

setsprovide names for the components of collections.Domainsare

entities that specify an index set and its distribution.Data collec-

tionsare defined over domains and will be distributed accordingly.

In the previous example, the regular mesh can be a three dimen-

sional domain with an index set that is a regular Cartesian product.

Collections of data items over the domain include the pressure vec-

tor which is defined at every point in the mesh domain and can be

represented as an array over the domain. A data distribution speci-

fies, for each component of the index set —(i,j,k) — the unit

of locality it belongs to and, potentially, the offset within that unit.

2

The irregular mesh can be a domain indexed by references to ele-

ment objects. In this case, the index set is a collection of element

objects which name the components of data items defined over the

irregular domain. A data distribution specifies, for each component

of the index set (Element e), the unit of locality it belongs to

and, potentially, the offset within that location.

We capture the behavior of the distribution machinery via a com-

mon interface which has various implementations defining com-

monly used classes of distributions such as block, cyclic, and in-

direct, as well as novel user-defined distributions. Two key opera-

tions exported by the distribution interface are the definition of the

mapping of indices to units of locality (Map(Index)) and their

layout (LocalLayout(Index)) within the units of locality. In

general, the interface should provide richer capabilities which are

beyond the scope of this paper.

The domain interface includes aDistribute method which is

parameterized by the distribution class. This method specifies the

distribution for the domain it is invoked on.

2.3 Applicability
Distributions for data parallel applications have been extensively

used in software tools, libraries and applications. The various ap-

proaches include manually specified distributions, automatically

distributed applications with compiler and run-time support, com-

ponent and object-oriented frameworks, and skeletons for scientific

applications.

Our design can be used for data parallel applications when:

• a numerical algorithm should be reusable regardless of the

geometry or physical structure of its input data,

• multiple distribution strategies need to be studied to investi-

gate the best approach, and

• low-level communication and synchronization details should

be concealed from the user.

2.4 Structure
Figure 1 depicts the elements involved in defining a distribution. A

Domain has oneIndex set associated with it and oneDistribution .

A Distribution class interface includes operations that allow

the specification of the mapping of an index to a unit of locality.

Thus,Map(Index) specifies the unit, whileLocalLayout(Index)

specifies the local address within that unit. TheDistribution

class can be extended to specify commonly used distributions or

novel user-defined distributions. A data collectionData can be de-

fined over that domain. The collection maps the domain index set

to the variables in the collection. Since the index set is distributed,

the addresses of the variables in the collections will be distributed

as well.

2.5 Participants
• Domain

is a description of a collection of names for data. These

names are referred to as the indices of the domain. All in-

dices for a domain are values with some common type. It

consists of:

– an index set,

– a distribution of that index set, and

– a set of associated data collections. All these collec-

tions share the index set and its distribution with the

domain but can have different data types.

• Index

defines thetype of indices: this includes integer tuples (in

the case of regular Cartesian product index sets) and object

references, such as instances of anode class in a dynamic

graph structure.

• Distribution

is a mapping from index values to units of locality. A distri-

bution allows a user to specify data locality and alignment by

overriding its default behavior. Its interface includes:

– a mapping from indices to units of locality

– a mapping from indices to offsets within units of local-

ity. We call this alocal layout.

• Concrete Distribution

overrides the mapping operations to implement a particular

distribution (i.e. Map andLocalLayout). The concrete

distribution is a specialization of theDistribution type.

• Data Collection

are abstractions of mappings from index sets to variables.

Arrays are one example of such mapping.

2.6 Collaborations
A user who wants to use distribution for a data parallel program,

must create a concrete distribution by providing the mapping and

local layout information.

3

Distribute(Distribution)

Domain

LocalLayout(Index)

Distribution

Distribution(Domain)
...

Map(Index)

...

11..* 1 1
1

0..*

1

Data

Data(Domain)

0..1

Index Index Set

Map(Index)

Block

LocalLayout(Index)

Map(Index)

Cyclic

LocalLayout(Index)

General

LocalLayout(Index)

Map(Index)

Figure 1: Distribution elements.

IndexDistributionADomainData(Domain) Program

Domain(Index)

GetIndex()

Distribute(DistributionA)

Map(Index)

Complete()

Data(Index)

Map(Index)

GetDistribution(Index)

Address(Index)

GetAddress(Index)

Data(IndexAddress)

LocalLayout(Index)

LocalLayout(Index)

Index(Type)

Figure 2: The interaction between distribution elements.

4

When a domain is created, the user specifies its index settypeand

its distributiontype. TheDistribute method can be applied to

the domain with the created distribution as parameter. As a con-

sequence, all data collections defined on the domain will be dis-

tributed according to the specified distribution. Accesses to dis-

tributed data are implemented to handle any required communica-

tion transparently.

Figure 2 depicts the collaborations between a domain, its distribu-

tion and a data collection defined on the domain. A program may

contain domain declaration statements which trigger the creation

of a domain based on the user provided information on its index

type and distribution type. In Figure 2 theDistributionA is

a user-defined concrete distribution for a domain. When instanti-

ating a domain with a particular distribution type, the index set of

the domain is mapped according to theMap andLocalLayout

operations for every index in the index set.Data(Domain) is a

data collection defined on the domain. Each access to a data item

given by an index is translated to reflect its distribution.

2.7 Consequences
There are a number of benefits and liabilities of our design for user-

defined data distributions:

1. The distribution class hierarchy allows a user to define distri-

butions which are more suitable for an application than hard-

wired distributions. A user needs to specify the mapping of

indices to units of locality and the local layout within the

units. More sophisticated control of the data arrangement

can be specified if required.

2. The domain abstraction allows the user to define domains

which are closer to the physical domain by extending index

types to include object references. Also, the index set of a

domain may have an inherent linear order (as in the case of

Cartesian products of integers), or may be arbitrarily ordered

(as, e.g., object references).

3. Data collections are associated with domains, and thus their

structure is defined in the domain rather than in the data it-

self. As a consequence, the programmer can define collec-

tions of data with complex and irregular structure without

complicating the data representation itself.

4. Giving the user full freedom in specifying the distribution in-

creases the burden on ensuring good run-time performance.

Our approach provides support for the optimization of data

distributions according to various criteria such as memory

overhead, iteration strategies, and data access performance.

Specialized distributions can be made part of standard li-

braries.

3. IMPLEMENTATION
Our design is implemented using the Chapel language and concep-

tually runs on a Chapel abstract machine. Most of the elements de-

scribed in the previous sections are part of the language and there-

fore are implemented as first-class entities.

An execution of theChapel Abstract Machinedetermines anex-

ecution locale set, which is an arrangement of identicallocales.

Locales represent the units of locality in Chapel. The size of the ex-

ecution locale set is determined at the time the program begins exe-

cution, and remains invariant thereafter. Data and computations can

be mapped to locales with the understanding that entities mapped to

the same locale are closer to each other than when they are mapped

to different locales. Different data objects that are mapped in the

same way to a set of locales are said to bealigned. If a computation

is mapped to the same locale as a data object accessed by it we say

that there is anaffinity between the computation and the data ob-

ject, resulting in alocal access; otherwise, the access isremote. In

terms of the performance metrics, a local access is less expensive,

i.e., burdened with less overhead, than a remote access.

A distribution maps indices to locales and a location within each

locale. The execution locale set is globally declared as:

var Locales : [1..num locales] locale;

3.1 Domains and Arrays
Domains are first-class entities that have a set of indices which may

be bounded or unbounded. In the former case the domain is called

definite, while in the latter,indefinite.

For each domain, there is a corresponding index type which in-

cludes primitive types, enumerated types, and class reference. There

are two categories of domains:

1. Arithmetic domains have bounded index sets with an integer

index type.

2. Indefinite domains have unbounded index sets and any of the

index types listed above.

An example for an arithmetic domain declaration in Chapel is:

5

var rMesh : domain(3) = [1..m, 1..n, 1..p];

This specifies a domain,rMesh , with an arithmetic index set of

rank 3. The index set is initialized by a Cartesian product.

Let us define an irregular mesh as being composed of geometrical
elements, their faces and vertices. The definition of such structure
in Chapel is:

class Element {

var idx : integer;

var nfe : integer;

var elemFaces : [1..nfe] Face;

class Face {

var idx : integer;

var nvf : integer;

var faceVerts : [1..nvf] Vertex;

}

class Vertex {

var idx : integer;

var dim : integer;

var coords : [1..dim] float;

}

}

An irregular domain over such mesh can be declared in Chapel as:

var iMesh : domain(Element);

Elements can be added to a domain and removed from a domain by

using Chapel predefined operations for indefinite domainsadd(elem)

andremove(elem) .

Data collections are defined over domains. Chapel provides sup-

port for a generic notion of an array that includes Fortran arrays as a

specific instance. Therefore, for the previously declared arithmetic

and indefinite domains, we can define data collections as follows:

var regArray : [rMesh] float;

var iregArray : [iMesh] float; .

3.2 Distributions
Distributions are a means to exploit locality in Chapel. A distribu-

tion is a mapping from domain index sets to locales. A programmer

can describe affinity between data and computation by associating

them with abstractlocales.

A distribution type is defined as a class that can be extended to

express user-defined distributions. The Chapel interface for a dis-

tribution is:

class distribution {

...

function SetDomain(d1 : domain);

function GetDomain() : domain;

function SetTarget(t : locale[]);

function GetTarget() : locale[];

function Map(i : index) : locale;

function LocalLayout(i : index) : location;

...

}

The Chapel compiler is written in the C++ programming language.

Internally, a domain is represented as a C++ classDomain , an

index as a C++ classIndex , and a distribution as a C++ class

Distribution . The user overrides the functionality of theDis-

tribution class by providing a concrete domain to instantiate

the distribution and concrete implementation for theMapandLocal-

Layout operations.

A user-defined block distribution can be written in Chapel as:

class block{

implements distribution;

block_size : integer;

--la is the target locale array

constructor create(d : domain, in la : locale[],

in bs : integer) {

this.SetDomain(d);

this.SetTarget(la);

block_size = bs;

...

}

function Map(in i: index) : locale {

return this.GetTarget()(ceil((i-1)/block_size)+1);

}

function LocalLayout(var in i : index) : location {

return (mod(i-1, block_size)+1);

}

To simplify the presentation we leave out the lower and upper bounds

for the index sets. Thus, the code above implicitly assumes that the

lower bound is 1. The block size can either be specified by the user

or computed by the system.

Distributions can be specified for domains and, as a consequence,

all data collections defined on a given domain will be distributed

6

according to the specified distribution:

var rMesh : domain(3)=[1..m,1..n,1..p]

distributed (block,block,block) on L3D;

var iMesh : domain(Element) disttributed (general); .

The first declaration defines adimensionaldistribution. Each di-
mension of the arrayregArray associated with therMesh do-
main will be block distributed on the corresponding dimension of
the three-dimensional locale array,L3D. The irregular arrayiregArray
associated with theiMesh domain will be distributed according to
a general distribution specified by the user on the available locales.
The following code excerpt shows how this can be done:

var iMesh : domain (Element) dist(general);

...

for i in iMesh {

...

i.locale = f(i,...);

-- this maps index i to a locale determined by function f

...

}

complete(D);

-- this statement ‘‘completes’’ the distribution by defining

-- the corresponding fields in the domain;

-- it can only be called after all indices in D have been

-- mapped;

}

Here, the function callf(...) references an arbitrary user-defined

function that establishes the point-to-point mapping between a do-

main index and a locale.

Concurrent execution is supported via the Chapelforall con-
struct. Distributed collections are iterated over using this statement.
The iteration space is split according to the data distribution and lo-
cal accesses are grouped within the same locale:

forall i in rMesh {

...

regArray(i) = regArray(i-1) + ...;

}

forall i in iMesh {

...

iregArray(i) = ...;

}

It is beyond of the scope of this paper to include details on code

generation and optimization for the Chapel compiler. Because the

implementation is an ongoing effort we are still in the process of

evaluating our approach for user-defined distributions and its im-

pact on efficiency.

4. RELATED WORK
There has been significant effort in the area of distributions for data

parallel applications and we will review two of those approaches:

(1) Early work on distributions in support of Fortran related lan-

guages and (2) Object-based systems, libraries and skeletons for

scientific programs.

4.1 Distribution Support for Fortran and Re-
lated Languages

1 The first language to allow users to control the local layout of data

was IVTRAN [22], which was developed for the SIMD machine

ILLIAC IV. Kali [21] (and its predecessor BLAZE) were among

the first languages to introduce distribution declarations in the con-

text of distributed-memory systems. Kali allows the dimensions

of an array to be orthogonally mapped onto an explicitly declared

processor array using simple regular distributions such asblockand

cyclic, and more complex distributions such asirregular in which

the mapping of each array element is explicitly specified. Sim-

ple forms of user-defined distribution were also permitted. Parallel

computation was specified by means offorall loops within a global

name space.

SUPERB [24] is an interactive restructuring tool, which translates

Fortran 77 programs into message-passing Fortran for distributed-

memory architectures. The user specifies the distribution of the

program’s data via an interactive language; based on compiler-

provided analysis, the user selects a transformation strategy for

the coarse-grain parallelization of the program for a distributed-

memory machine.

The Fortran D project [9, 17] follows a slightly different approach

to specifying distributions. The distribution of data is specified by

first aligning data arrays to virtual arrays known asdecompositions.

The decompositions are then distributed across an implicit set of

processors using relative weights for the dimensions. The language

allows an extensive set of alignments along with simple regular and

irregular distributions.

Vienna Fortran [5] is the first language to provide a complete speci-

fication of mapping constructs in the context of Fortran. In addition

to simple regular and irregular distributions, Vienna Fortran defines

a generalized block distribution which allows arbitrarily sized con-

tiguous segments of data to be mapped to the processors. The lan-

guage also proposes a mechanism for user-defined distribution and

7

alignment functions, and defines multiple methods of passing dis-

tributed data across procedure boundaries.

HPF-2 [16] defines a set of directives for Fortran 95 largely based

on previous work in Fortran D and Vienna Fortran. It provides sig-

nificant support for irregular distributions (includinggeneral block

and indirect mappings) as well as the possibility to map pointers,

components of derived types, and objects to subsets of processors

directly.

Newer developments, such as thepartitioned global address space

(PGAS) languages Coarray Fortran, UPC, and Titanium take a rea-

sonable intermediate approach, providing a higher level of abstrac-

tion than MPI but dealing only with standard distributions and re-

quiring explicit control of communication.

The ZPL language supports a concept of dimensional distributions

which are organized into five types, each of which has its own prop-

erties: block, cyclic, multi-block, non-dist, and irregular. These

types give the compiler the information it needs to generate loop

nests and communication, abstracting the details of the distribution

from the compiler’s knowledge. This strategy was detailed in [7],

in which a few block distributions were implemented as a proof-of-

concept.

4.2 Distribution Support in Object-Based Sys-
tems

Hawk [13] is a system based on ORCA [2, 1] that has the notion

of partitioned objects for supporting regular, data parallel appli-

cations. There is one thread of control per data access. In this

Distributed Shared Memory (DSM) software implementation the

entire data is replicated on each address space and only parts of it

are truly owned. The parts that are not owned are invalid and up-

dated by a consistency protocol. Due to the replication strategy, the

system is inefficient for intensive data applications.

EPEE [18, 23] is an Eiffel parallel execution environment aimed

at offering a high level API developer a platform for incorporat-

ing new components as common behavioral patterns are detected.

The environment provides the programmer with a set of classes

for handling data distribution issues. For instance, mechanisms

for distributing bi-indexable objects (e.g., arrays, grids, matrices,

tables) based on a block-wise partitioning are encapsulated in a

class Distribution 2D. This idea is similar to the approach taken by

CO2P3S [20]. This is a system that allows the user to specify par-

allel design patterns and, based on the specification, generates data

parallel programs, including communication and synchronization

code. The effort required to write such patterns may be significant,

but once written, they can be reused.

Charm++ [19] is a concurrent object-oriented system based on C++.

Parallelism is explicitly expressed as an extension to the C++ lan-

guage. Parallel processes (chares) communicate through message

objects that are explicitly packed/unpacked by user. The system

also features special shared objects and remote accesses through

remote procedure calls. Thus, communication and synchronization

may be controlled by the programmer. Synchronization is ensured

for shared objects.

ICC++ [6] is a C++ dialect for high performance parallel comput-

ing. Data collections are represented as arrays encapsulated within

objects. Distribution can be explicitly specified by overloading the

access[] operator to a collection object. Irregular distributions

can also be manually specified by supplying a map file which is a

sequence of integer indices along with virtual processor numbers.

created for large

pC++ [3] is an object parallel language based on C++ and HPF-

like. Unlike templates in HPF, distributions in pC++ are first class

objects. ADistribution is characterized by its number of di-

mensions, the size in each dimension and the function by which the

distribution is mapped to processors. Current distribution functions

allowed in pC++ include BLOCK, CYCLIC, and WHOLE.

The Mentat [12] system provides data-driven support for object-

oriented programming. The idea is to support a data-flow graph

computation model in which nodes are actors and arcs are data de-

pendences. The programmer must specify the classes whose mem-

ber functions are sufficiently computationally complex to warrant

parallel execution. The data-flow model is enhanced to support

larger granularity and a dynamic topology. Parallelism is supported

through having multiple actors executing on multiple processors.

HPC++ [11] is based on PTSL (Parallel Standard Template Li-

brary), a parallel extension of STL, Java style thread class for shared-

memory architectures, and HPF like directives for loop level paral-

lelism. A context is a virtual address space on a node. Parallelism

within a context is loop level parallelism. Parallelism across multi-

ple contexts allows one thread of execution on each context. Low

level synchronization primitives (including semaphores and barri-

ers) coexist with high level collections and iterators.

Distributed recursive sets [8] are nested data collections that allow

expressing complex data structures in data parallel applications.

8

The collections are automatically distributed by a system using a

graph-based partitioning scheme.

There are two major developments in Chapel that distinguish it

from previous work:

1. The generalization of the array concept and the ability to de-

fine domains indexed by arbitrary primitive and user-defined

data types.

2. The generality of the distribution machinery which is a com-

bination of system-supported and user-defined distributions.

The distribution framework in Chapel allows user access to

distribution decisions by letting the user define novel distri-

butions based on a system provided distribution type.

5. CONCLUSION
This paper presented a highly reusable data distribution design for

data intensive, high performance applications. The design can be

used as-is by application writers, object-oriented frameworks and

skeleton writers, and generally, high-level languages and tools writ-

ers. The elements of the distribution design pattern are novel con-

cepts introduced by the Chapel high productivity language.

We showed how domains and their index sets allow the construc-

tion of complex data structures, with index types including a vari-

ety of primitive or user-defined types. Further, we showed how data

collections can be associated with domains, inheriting their index

set and its distribution.

We believe that our design balances the system support and user

control over distributions having the potential of delivering both

promises of high productivity and performance guarantees. As our

Chapel compiler and run-time infrastructure evolves, we hope to

provide empirical evidence on these aspects.

6. ACKNOWLEDGMENT
This paper is based upon work supported by the Defense Advanced

Research Projects Agency under its Contract No. NBCH3039003.

The research described in this paper was partially carried out at

the Jet Propulsion Laboratory, California Institute of Technology,

under contract with the National Aeronautics and Space Adminis-

tration.

7. REFERENCES
[1] H. E. Bal and M. F. Kaashoek. Object distribution in Orca

using compile-time and run-time techniques. In A. Paepcke,

editor,Proceedings of the Conference on Object-Oriented

Programming Systems, Languages, and Applications

(OOPSLA’93), volume 28 ofSIGPLAN Notices, pages

162–177, New York, NY, 1993. ACM Press.

[2] H. E. Bal, M. F. Kaashoek, A. S. Tanenbaum, and J. Jansen.

Replication Techniques for Speeding up Parallel

Applications on Distributed Systems.Concurrency Practice

and Experience, 4(5):337–355, August 1992.

[3] F. Bodin, P. Beckman, D. Gannon, S. Narayana, and S. X.

Yang. Distributed pC++: Basic Ideas for an object parallel

language.Scientific Programming, 2(3), 1993.

[4] D. Callahan, B. Chamberlain, and H. Zima. The Cascade

High Productivity Language. InNinth International

Workshop on High-Level Parallel Programming Models and

Supportive Environments (HIPS’04), pages 52–60. April

2004.

[5] B. M. Chapman, P. Mehrotra, and H. P. Zima. Programming

in Vienna Fortran.Scientific Programming, 1(1):31–50,

1992.

[6] A. Chien, U. Reddy, J. Plevyak, and J. Dolby. ICC++ — A

C++ dialect for high performance parallel computing.

Springer LNCS, 1049:76–94, 1996.

[7] S. J. Deitz.High-Level Programming Language Abstractions

for Advanced and Dynamic Parallel Computations. PhD

thesis, University of Washington, 2004.

[8] R. E. Diaconescu.Object Based Concurrency for Data

Parallel Applications: Programmability and Effectiveness.

PhD thesis, Norwegian University of Science and

Technology, Trondheim, Norway, August 2002. [NTNU

2002:830, IDI Report 9/02, ISBN 82-471-5483-8, ISSN

0809-103X].

[9] G. Fox, Hiranandani, S., Kennedy, K., Koelbel, C., Kremer,

U., Tseng, C.-W., and M.-Y. Wu. Fortran D language

specification. Technical Report CRPC-TR90079, Houston,

TX, December 1990.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design

Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley Professional Computing. Addison-Wesley,

18th printing edition, September 1999.

[11] D. Gannon, P. Beckman, E. Johnson, T. Green, and

M. Levine. HPC++ and the HPC++Lib Toolkit. InCompiler

9

Optimizations for Scalable Parallel Systems Languages,

pages 73–108, 2001.

[12] A. S. Grimshaw. The mentat computation model data-driven

support for object-oriented parallel processing. Technical

Report CS-93-30, University of Virginia, May 1993.

[13] S. B. Hassen, I. Athanasiu, and H. E. Bal. A flexible

operation execution model for shared distributed objects. In

Proceedings of the OOPSLA’96 Conference on

Object-oriented Programming Systems, Languages, and

Applications, pages 30–50. ACM, October 1996.

[14] High Performance Fortran Forum. High Performance Fortran

language specification, version 1.0. Technical Report

CRPC-TR92225, Houston, Tex., 1993.

[15] High Performance Fortran Forum. HPF-2 scope of work and

motivating applications. Technical Report CRPC-TR 94492,

Houston, TX, 1994.

[16] High Performance Fortran Forum. High Performance Fortran

language specification, version 2.0. Technical report, Jan.

1997.

[17] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiling

fortran d for mimd distributed-memory machines.Commun.

ACM, 35(8):66–80, 1992.

[18] J.-M. Jzquel. An object-oriented framework for data

parallelism.ACM Computing Surveys, 32(31):31–35, March

2000.

[19] L. V. Kale and S. Krishnan. CHARM++: A Portable

Concurrent Object Oriented System Based On C++. In

Proceedings of the OOPSLA ’93 Conference on

Object-oriented Programming Systems, Languages and

Applications, pages 91–108, 1993.

[20] S. MacDonald, J. Anvik, S. Bromling, J. Schaeffer,

D. Szafron, and K. Tan. From patterns to frameworks to

parallel programs.Parallel Comput., 28(12):1663–1683,

2002.

[21] P. Mehrotra and J. V. Rosendale. Programming distributed

memory architectures using Kali. InAdvances in Languages

and Compilers for Parallel Computing. MIT Press, 1991.

[22] R. E. Millstein. Control structures in illiac iv fortran.

Commun. ACM, 16(10):621–627, 1973.

[23] N. Sato, S. Matsuoka, J.-M. Jezequel, and A. Yonezawa. A

methodology for specifying data distribution using only

standard object-oriented features. InProc. of International

Conference on Supercomputing, pages 116–123. ACM, 1997.

[24] H. Zima, H. Bast, and M. Gerndt. Superb: A tool for

semi-automatic MIMD/SIMD parallelization.Parallel

Computing, 6:1–18, 1988.

10

